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Critical exponents of a two-dimensional continuum percolation system
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A simulation is carried out in order to investigate percolation threshold and critical exponents of a two-
dimensional continuum percolation system. In the simulation, many circular holes are made in a rectangular
plane at random until all of the paths from one end to the other disappear. The critical experiet for the
correlation length is obtained on the basis of a scaling assumption, and the behavior of connectivity and
percolation probability near the percolation threshold for an infinite sample is estimated by applying the
finite-size scaling[S1063-651X%96)02210-6

PACS numbses): 64.60.Ak, 68.35.Rh, 75.40.Cx

I. INTRODUCTION edges of the rectangular plane, ahthe diameter of a hole.
“Remaining connected component” and “island” are re-
The percolation problenil-5] has been studied from maining parts of the plane. As the number of holes increases,
various points of view, from theoretical interest to wide ap-the area of remaining connected components which keep the
plications. For instance, it is well known that the percolationconnection between the edgé#\ andB C decreases, and the
problem is an important model which indicates critical phe-number of small islands increases.
nomena and retains various applicabilities which spread over In the simulation, the number of holes is increased at
various fields such as disease propagdtidnoil recovery in  random until all of the paths fron®A to BC are discon-
oil wells [6], random networK7,8], and so on. nected, and then areas of remaining parts of the plamad
Generally, discrete percolation models on a lattice havehe area of the largest remaining connected componeat
been discussed by many researchers, and the critical expthe critical situation where the path betwe®?A and BC
nents of discrete models are clarified. However, only a fewdisappears are measured. The ratia pto the area of the
of the continuum models, where the positions of constituentsectangular planep=r,/ab, means the probability that an
are not restricted to the discrete sites of a regular lattice, havarbitrary point in the plane belongs to any remaining parts of
been investigated. Halperin, Feng, and §&jpredicted that the plane. On the other hand, the ratiorgfto ab indicates
some of the critical exponents in the continuum percolatiorthe probability that an arbitrary point in the plane belongs to
model might be different from those in the conventional dis-the largest remaining connected component, and represents
crete percolation models. Therefore, the continuum percolahe approximate value of the percolation probabifty
tion problem should be studied in detail. Disconnections of paths are determined by investigating
The present report discusses the percolation threshold, thehether the overlaps between the holes percolates across the
critical exponents of connectivity, and those of the percolasample as follows. The maximum value mgx(and the
tion probability of a two-dimensional continuum percolation minimum value miny;) are found out from coordinates of
system by a simulation method. In the present simulationcenters of holesx;,y;) which unite with each other. If the
many circular holes are made in a rectangular plane at rarconditions given by
dom until all of the paths from one end to the other disap-
pear. Variations of the connectivity and the percolation prob-

ability with the area of remaining parts of a plane are - 9 _9
obtained for various values of diameter of holes, and the min(y;) = 2 and - maxy;)=| a 2 @
percolation threshold is estimated. The critical exponents of
the connectivity and the percolation probability in the two-
dimensional continuum model are obtained on the basis of y
the scaling assumptiofil0]. In particular the value of the
critical exponentv for the correlation length of the two- C
dimensional continuum percolation problem is 1.64, and this A
value differs fromv=4/3 which is known for the lattice hole
percolation[11]. Using the finite-size scalingLO], it is also rerﬁaining connected
shown how the connectivity and the percolation probability a ~+ component
behave near the percolation threshold for an infinite sample. ]
| — island
IIl. NUMERICAL SIMULATION 0 B— T

Figure 1 shows a two-dimensional continuum percolation
system. In this system, many circular holes are made in a
rectangular plane at randomm.andb indicate the length of FIG. 1. Two-dimensional continuum percolation system.
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FIG. 4. The variation of log(pa,—pc) with log;oL for the
p connectivity and the percolation probability.

L . Ill. NUMERICAL RESULTS
FIG. 2. The variation ofc with p.

We divided the interval0,1) of p into 200 equal small
are satisfied, the path betwe®m andBC disappears. Areas Segmentsps; (i=1~200), and carried out the numerical
of remaining parts are measured in the following mannersimulation by using the following values: length @A,
The planeOABC is divided into 15(< 150 pieces, and the a=100 mm; length ofOB, b=100 mm; diameter of holes,
state of each piece is expressed by the value of a element 8 6,10,15,20,25,30 mm; total number of samples,
a matrix of order (150,150), O or 1. Initial values of all N=5000. The interval of the segmentps is
elements of the matrix are 1, and values of elements whickp; ,p;+0.005), wherep;= (i —1)/200.
correspond to holes are replaced by 0. Afterward clusters are
labeled by using the cluster labeling methid®], and ap- A. Connectivity
proximate values of areas of clusters are obtained frqm the Figure 2 shows the variation of the connectivigywith
number of elements whose values are equal to 1. In this casge 4re4 ratig for different diametersl. Values of the rela-
calculated values of areas are slightly §maller than the COLive system sizd_, which denotes the relative length of an
rect values. However Fhe error for=0.1 is about 3%, and edge of a plane when the value afis fixed, are represented
the error decreases with the increasgof

h btain th - hich in Fig. 2. In this case, we set the valuelofor d=6 equal to
Furthermore, we obtain the connectiviy which repre- 100 for the sake of convenience. The increase ofeans the

sents the probability of the existence of any remaining conyorease of. . As shown in this figure, the slope of curves

nected (_:o_mpo_nents \.Nh'Ch percolate thro_ugh_ the system. Tnﬁcreases with decreasiry and simultaneously the thresh-
connectivityC in the interval @; ,pi+Ap) is given by old value for each diameter of holes, which is the minimum
value of p for C(p)#0, increases with the decrease df
C=fi/n, (2 Furthermore, it can be seen that all lines intersect in the
neighborhood ofp=0.315. Thus we can estimate that the
wheren is the total number of samples whose area ratio threshold valugo, for the infinite value ofL may be 0.315.
lies in the interval p;,p;+Ap), and f; is the number of

samples in which there are any path betw& andBC. B. Percolation probability
Figure 3 shows the variation of the percolation probability
1.0 T T T T T 1 P with the ratio of the area of all remaining parts of a plane
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FIG. 5. The variation of logC(p,,L) with log,¢L for the con-
FIG. 3. The variation oP with p. nectivity.
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TABLE |. Effective percolation threshold,, .

d L Pay .
[l

6 100 0.36 <

10 60 0.37 E:

15 40 0.39 of;

20 30 0.40 =2

25 24 0.41

30 20 0.42
p. Values ofP are average over each small segmgntfor log,, L
d=6, 15, and 30 mm which are indicated by, @, and
O, respectively. FIG. 6. The variation of logP(p.,L) with log,;.L for the per-

For larger values op, P is found to be proportional to colation probability.
p, and the area of the largest remaining connected compo-
nent which connects between the edge@s and BC be- C(pe,L)cL =B’ P(pg,L)ocL ™ Fp!?, (6)
comes large. Threshold valugg(L) increase with the in-
crease olL. Referring to the result for the connectivity, the

threshold valuep, for the infinite value ofl is 0.315 where the subscripts and p indicate the values of the con-
c .315.

nectivity and the percolation probability, respectively. Since
the qualitative behavior o€(p) near p=p. is similar to
those of the probability?(p) and the magnetizatiom(p)

In this section, we obtained the critical exponeatsg,  [13], we applied the symboB to the exponent foC(p) .
y, and v on the basis of the scaling assumption, and estiL0g-log plots ofC(pc,L) vsL andP(p,L) vsL are shown
mated the behavior of the connectivity and the percolatiod" Figs. 5 and 6, respectively. The straight linésand C
probability for L— from applying the finite-size scaling. show the best fit for large (L =30,40,60,100) obtained by
@, B, v, andv are the exponents which are corresponding tdhe method of least squares. We can obtain values.éf
the total number of remaining connected components, thénd B,/ by the slope of the lineB andC. Using Eq.(5),
strength of the infinite network, the average size of finitevalues of the critical exponenf and g, can be obtained as
remaining connected components, and the correlation lengtfollows:
respectively.

IV. CRITICAL EXPONENTS AND FINITE-SIZE SCALING

B:.=0.026, B,=0.67. @
A. Critical exponents

According to the scaling assumption, the difference be- We obtain the exponentsandy by the use of the scaling
tween the effective percolation threshold for one relative syslaW
tem sizep,, and the threshold valug, is given by

=2-Dv, y=Dv-28, 8
Pay — PecL 1. 3 “ v y=Pveep ®

where D is the dimension. Substituting Eq&5), (7) and

From Eq.(3), the critical exponenir can be determined b . ‘
a3 P y D=2 into Eqgs.(8), values ofa, y., andy, can be obtained.

the dependence gf,, uponL.
In the present case, the valuemfis 0.315, andy,, can

be calculated from a=-1.28, v.=3.23, y,=1.94. 9
200
Pay= 2, Pifi/n. @ Lor
08 i
Values of p,, are shown in Table I. We plot 3 ~ 7
l0g1o(Pay — Pc) Versus loggl, and draw the best straight line = 0.6 B ]
A for largeL (L =30,40,60,100) by the use of the method of = ,,| _
least squares in Fig. 4. The value of the slope of the line A is \5 » i
—0.609. Thus we can obtain the critical exponenas fol- 02| -
lows: - .
0 .
—200 -100 0
v=1.64. (5) 100 200

(P - pc)Ll/V
The value ofB/v can be also determined on the basis of

the following dependence doE(p.,L) and P(p.,L) upon FIG. 7. The finite-size scaling of the connectivity.
L. B.=0.026, v=1.64, p,=0.315.
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foregoing values of the critical exponents are appropriate,
and we can estimate the behavior of the connectivity and the
percolation probability near the percolation threshold for an
infinite sample from Figs. 7 and 8.

V. CONCLUSION

P(p, L)LA/”

The threshold value and the critical exponents of the two-
dimensional continuum percolation system have been inves-
0 tigated by the use of computer simulation. The threshold
—100 0 100 200 value of the connectivity and the percolation probability has
(p—po)LM" been estimated, and the critical exponents have been ob-
tained on the basis of the scaling assumption. Furthermore,
the finite-size scaling has been carried out.
FIG. 8. The finite-size scaling of the percolation probability. = The following conclusions can be drawn from the ob-
Bp=0.67, v=1.64, p.=0.315. tained results.
(1) The threshold value of the connectivity and the perco-
As shown in Egs(5), (7), and(9), values of8 andy of the lation probability is 0.315 in the present continuum percola-
connectivity are different from those of the percolation prob-tion model.(2) The critical exponents of the connectivity and
ability. the percolation probability are as follows:
It is known that the value of the critical exponeniof a o
two-dimensional lattice model is 4/BL1]. However, the Connectivity;
value of the critical exponent of a continuum percolation
system is 1.64, and this value is different from the value ofa @~ ~ 128, B.=0.026, ¥.=3.23, v=1.64,
discrete model.

percolation probability;

B. Finite-size scaling a=-128, B,=0.67, y,=1.94, v=1.64.

Figures 7 and 8 shpyv the'results of the connectivity an ) The relation of the finite-size scaling holds well near the
the percolation probability which are arranged on the basis o

the scaling assumption. The scaling of the percolation prob ercolation threshold, and the behavior of the connectivity
- Scaling assumption. 1he scaling per 10N Probz 4 the percolation probability near the percolation threshold
ability is carried out by using the curves of the fourth order

: ) . for an infinite sample can be estimated.
polynomial which are determined by the least mean square P

approximation. As shown in these figures, all lines approach Lastly, the authors are greatly indebted to Mr. H. Ishihara,
one another neap=p., and the relation of the finite-size a graduate of Chubu University, for his considerable assis-
scaling holds well. Therefore, it can be considered that théance with the computer programs.
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