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A simulation is carried out in order to investigate percolation threshold and critical exponents of a two-
dimensional continuum percolation system. In the simulation, many circular holes are made in a rectangular
plane at random until all of the paths from one end to the other disappear. The critical exponentn51.64 for the
correlation length is obtained on the basis of a scaling assumption, and the behavior of connectivity and
percolation probability near the percolation threshold for an infinite sample is estimated by applying the
finite-size scaling.@S1063-651X~96!02210-6#

PACS number~s!: 64.60.Ak, 68.35.Rh, 75.40.Cx

I. INTRODUCTION

The percolation problem@1–5# has been studied from
various points of view, from theoretical interest to wide ap-
plications. For instance, it is well known that the percolation
problem is an important model which indicates critical phe-
nomena and retains various applicabilities which spread over
various fields such as disease propagation@1#, oil recovery in
oil wells @6#, random network@7,8#, and so on.

Generally, discrete percolation models on a lattice have
been discussed by many researchers, and the critical expo-
nents of discrete models are clarified. However, only a few
of the continuum models, where the positions of constituents
are not restricted to the discrete sites of a regular lattice, have
been investigated. Halperin, Feng, and Sen@9# predicted that
some of the critical exponents in the continuum percolation
model might be different from those in the conventional dis-
crete percolation models. Therefore, the continuum percola-
tion problem should be studied in detail.

The present report discusses the percolation threshold, the
critical exponents of connectivity, and those of the percola-
tion probability of a two-dimensional continuum percolation
system by a simulation method. In the present simulation,
many circular holes are made in a rectangular plane at ran-
dom until all of the paths from one end to the other disap-
pear. Variations of the connectivity and the percolation prob-
ability with the area of remaining parts of a plane are
obtained for various values of diameter of holes, and the
percolation threshold is estimated. The critical exponents of
the connectivity and the percolation probability in the two-
dimensional continuum model are obtained on the basis of
the scaling assumption@10#. In particular the value of the
critical exponentn for the correlation length of the two-
dimensional continuum percolation problem is 1.64, and this
value differs fromn54/3 which is known for the lattice
percolation@11#. Using the finite-size scaling@10#, it is also
shown how the connectivity and the percolation probability
behave near the percolation threshold for an infinite sample.

II. NUMERICAL SIMULATION

Figure 1 shows a two-dimensional continuum percolation
system. In this system, many circular holes are made in a
rectangular plane at random.a andb indicate the length of

edges of the rectangular plane, andd the diameter of a hole.
‘‘Remaining connected component’’ and ‘‘island’’ are re-
maining parts of the plane. As the number of holes increases,
the area of remaining connected components which keep the
connection between the edgesOA andBC decreases, and the
number of small islands increases.

In the simulation, the number of holes is increased at
random until all of the paths fromOA to BC are discon-
nected, and then areas of remaining parts of the planer a and
the area of the largest remaining connected componentr c at
the critical situation where the path betweenOA and BC
disappears are measured. The ratio ofr a to the area of the
rectangular plane,p5r a /ab, means the probability that an
arbitrary point in the plane belongs to any remaining parts of
the plane. On the other hand, the ratio ofr c to ab indicates
the probability that an arbitrary point in the plane belongs to
the largest remaining connected component, and represents
the approximate value of the percolation probabilityP.

Disconnections of paths are determined by investigating
whether the overlaps between the holes percolates across the
sample as follows. The maximum value max(yj) and the
minimum value min(yj) are found out from coordinates of
centers of holes (xj ,yj ) which unite with each other. If the
conditions given by

min~yj !<
d

2
and max~yj !>S a2

d

2D ~1!

FIG. 1. Two-dimensional continuum percolation system.
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are satisfied, the path betweenOA andBC disappears. Areas
of remaining parts are measured in the following manner.
The planeOABC is divided into 1503150 pieces, and the
state of each piece is expressed by the value of a element of
a matrix of order (150,150), 0 or 1. Initial values of all
elements of the matrix are 1, and values of elements which
correspond to holes are replaced by 0. Afterward clusters are
labeled by using the cluster labeling method@12#, and ap-
proximate values of areas of clusters are obtained from the
number of elements whose values are equal to 1. In this case
calculated values of areas are slightly smaller than the cor-
rect values. However the error forp50.1 is about 3%, and
the error decreases with the increase ofp.

Furthermore, we obtain the connectivityC, which repre-
sents the probability of the existence of any remaining con-
nected components which percolate through the system. The
connectivityC in the interval (pi ,pi1Dp) is given by

C5 f i /n, ~2!

wheren is the total number of samples whose area ratiop
lies in the interval (pi ,pi1Dp), and f i is the number of
samples in which there are any path betweenOA andBC.

III. NUMERICAL RESULTS

We divided the interval~0,1! of p into 200 equal small
segmentspsi ( i51;200), and carried out the numerical
simulation by using the following values: length ofOA,
a5100 mm; length ofOB, b5100 mm; diameter of holes,
d56,10,15,20,25,30 mm; total number of samples,
n55000. The interval of the segmentpsi is
(pi ,pi10.005), wherepi5( i21)/200.

A. Connectivity

Figure 2 shows the variation of the connectivityC with
the area ratiop for different diametersd. Values of the rela-
tive system sizeL, which denotes the relative length of an
edge of a plane when the value ofd is fixed, are represented
in Fig. 2. In this case, we set the value ofL for d56 equal to
100 for the sake of convenience. The increase ofd means the
decrease ofL. As shown in this figure, the slope of curves
increases with decreasingd, and simultaneously the thresh-
old value for each diameter of holes, which is the minimum
value of p for C(p)Þ0, increases with the decrease ofd.
Furthermore, it can be seen that all lines intersect in the
neighborhood ofp50.315. Thus we can estimate that the
threshold valuepc for the infinite value ofL may be 0.315.

B. Percolation probability

Figure 3 shows the variation of the percolation probability
P with the ratio of the area of all remaining parts of a plane

FIG. 2. The variation ofC with p.

FIG. 3. The variation ofP with p.

FIG. 4. The variation of log10(pav2pc) with log10L for the
connectivity and the percolation probability.

FIG. 5. The variation of log10C(pc ,L) with log10L for the con-
nectivity.
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p. Values ofP are average over each small segmentpsi for
d56, 15, and 30 mm which are indicated byh, d, and
s, respectively.

For larger values ofp, P is found to be proportional to
p, and the area of the largest remaining connected compo-
nent which connects between the edgesOA and BC be-
comes large. Threshold valuespc(L) increase with the in-
crease ofL. Referring to the result for the connectivity, the
threshold valuepc for the infinite value ofL is 0.315.

IV. CRITICAL EXPONENTS AND FINITE-SIZE SCALING

In this section, we obtained the critical exponentsa, b,
g, and n on the basis of the scaling assumption, and esti-
mated the behavior of the connectivity and the percolation
probability for L→` from applying the finite-size scaling.
a, b, g, andn are the exponents which are corresponding to
the total number of remaining connected components, the
strength of the infinite network, the average size of finite
remaining connected components, and the correlation length,
respectively.

A. Critical exponents

According to the scaling assumption, the difference be-
tween the effective percolation threshold for one relative sys-
tem sizepav and the threshold valuepc is given by

pav2pc}L
21/n. ~3!

From Eq.~3!, the critical exponentn can be determined by
the dependence ofpav uponL.

In the present case, the value ofpc is 0.315, andpav can
be calculated from

pav5(
i51

200

pi f i /n. ~4!

Values of pav are shown in Table I. We plot
log10(pav2pc) versus log10L, and draw the best straight line
A for largeL(L530,40,60,100) by the use of the method of
least squares in Fig. 4. The value of the slope of the line A is
20.609. Thus we can obtain the critical exponentn as fol-
lows:

n51.64. ~5!

The value ofb/n can be also determined on the basis of
the following dependence ofC(pc ,L) and P(pc ,L) upon
L.

C~pc ,L !}L2bc /n, P~pc ,L !}L2bp /n, ~6!

where the subscriptsc andp indicate the values of the con-
nectivity and the percolation probability, respectively. Since
the qualitative behavior ofC(p) near p5pc is similar to
those of the probabilityP(p) and the magnetizationm(p)
@13#, we applied the symbolb to the exponent forC(p) .
Log-log plots ofC(pc ,L) vsL andP(pc ,L) vsL are shown
in Figs. 5 and 6, respectively. The straight linesB andC
show the best fit for largeL (L530,40,60,100) obtained by
the method of least squares. We can obtain values ofbc /n
andbp /n by the slope of the linesB andC. Using Eq.~5!,
values of the critical exponentsbc andbp can be obtained as
follows:

bc50.026, bp50.67. ~7!

We obtain the exponentsa andg by the use of the scaling
law

a522Dn, g5Dn22b, ~8!

whereD is the dimension. Substituting Eqs.~5!, ~7! and
D52 into Eqs.~8!, values ofa, gc , andgp can be obtained.

a521.28, gc53.23, gp51.94. ~9!

FIG. 7. The finite-size scaling of the connectivity.
bc50.026, n51.64, pc50.315.

TABLE I. Effective percolation thresholdpav .

d L pav

6 100 0.36
10 60 0.37
15 40 0.39
20 30 0.40
25 24 0.41
30 20 0.42

FIG. 6. The variation of log10P(pc ,L) with log10L for the per-
colation probability.
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As shown in Eqs.~5!, ~7!, and~9!, values ofb andg of the
connectivity are different from those of the percolation prob-
ability.

It is known that the value of the critical exponentn of a
two-dimensional lattice model is 4/3@11#. However, the
value of the critical exponentn of a continuum percolation
system is 1.64, and this value is different from the value of a
discrete model.

B. Finite-size scaling

Figures 7 and 8 show the results of the connectivity and
the percolation probability which are arranged on the basis of
the scaling assumption. The scaling of the percolation prob-
ability is carried out by using the curves of the fourth order
polynomial which are determined by the least mean square
approximation. As shown in these figures, all lines approach
one another nearp5pc , and the relation of the finite-size
scaling holds well. Therefore, it can be considered that the

foregoing values of the critical exponents are appropriate,
and we can estimate the behavior of the connectivity and the
percolation probability near the percolation threshold for an
infinite sample from Figs. 7 and 8.

V. CONCLUSION

The threshold value and the critical exponents of the two-
dimensional continuum percolation system have been inves-
tigated by the use of computer simulation. The threshold
value of the connectivity and the percolation probability has
been estimated, and the critical exponents have been ob-
tained on the basis of the scaling assumption. Furthermore,
the finite-size scaling has been carried out.

The following conclusions can be drawn from the ob-
tained results.

~1! The threshold value of the connectivity and the perco-
lation probability is 0.315 in the present continuum percola-
tion model.~2! The critical exponents of the connectivity and
the percolation probability are as follows:

connectivity;

a521.28, bc50.026, gc53.23, n51.64,

percolation probability;

a521.28, bp50.67, gp51.94, n51.64.

~3! The relation of the finite-size scaling holds well near the
percolation threshold, and the behavior of the connectivity
and the percolation probability near the percolation threshold
for an infinite sample can be estimated.

Lastly, the authors are greatly indebted to Mr. H. Ishihara,
a graduate of Chubu University, for his considerable assis-
tance with the computer programs.
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FIG. 8. The finite-size scaling of the percolation probability.
bp50.67, n51.64, pc50.315.

3392 54A. OKAZAKI et al.


